Die Analysen der Verbindungen, die nicht mit Deuterium markiert waren, wurden in unserem mikroanalytischen Laboratorium (Leitung *W. Manser*) ausgeführt. Die IR.-Absorptionsspektren wurden von Frl. *E. Aeberli* aufgenommen.

### Zusammenfassung.

Das 1-Methyl-cyclodecandiol-(1, 6) (III), das bei der Einwirkung von Methylmagnesiumjodid auf das 6-Hydroxy-cyclodecanon-(1) (I) entsteht, gibt mit 84-proz. Phosphorsäure das 6-Methyl-cyclodecanon-(1) (IV), dessen Konstitution durch Abbau zur  $\delta$ -Methylsebacinsäure (VII) bestimmt wurde.

Durch Wiederholung dieser Reaktion mit 1-Methyl-cyclodecandiol-(1,6)-[6-D] (XI) wurde ein 6-Methyl-cyclodecanon-(1)-[6-D] (XII) erhalten, woraus geschlossen wird, dass bei der Reaktion eine 1,6-Hydrid- bzw. Deuterid-Verschiebung stattfindet.

Die beiden 1,6-Dimethyl-cyclodecandiole (XVIa und b), die durch Einwirkung von Methylmagnesiumjodid auf das Cyclodecandion-(1,6) (XIV) entstehen, geben bei der Behandlung mit 84-proz. Phosphorsäure einen und denselben Kohlenwasserstoff  $C_{12}H_{20}$  (wahrscheinlich XVII) und nicht das 6,6-Dimethyl-cyclodecanon-(1) (XVIII), welches bei einer transanularen Pinakolin-Umlagerung entstehen würde.

> Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule, Zürich.

## 167. Contribution à l'étude

du système quinaire Ca<sup>++</sup>-NH<sub>4</sub><sup>+</sup>-H<sup>+</sup>-NO<sub>3</sub><sup>-</sup>-PO<sub>4</sub><sup>---</sup>-H<sub>2</sub>O. XIX. Les solutions saturées, à 25°, de phosphate double de calcium et d'ammonium Ca<sub>9</sub>(NH<sub>4</sub>)<sub>4</sub>H<sub>32</sub>(PO<sub>4</sub>)<sub>18</sub>,10H<sub>2</sub>O

par R. Flatt, G. Brunisholz et R. Hotz.

(13 VI 56)

L'étude du système quaternaire  $Ca^{++}-NH_4^+-H^+-PO_4^{---}-H_2O^1$ ) a montré qu'il existe un phosphate double de calcium et d'ammonium de la formule

 $Ca_9(NH_4)_4H_{32}(PO_4)_{18}, 10H_2O \ (symbole \ D^I)$ 

Ce composé, qui renferme 54,4% P<sub>2</sub>O<sub>5</sub> et 2,4% N, peut être considéré comme un composé d'addition de phosphate monocalcique, d'ammoniac et d'eau:

 $9 \operatorname{CaH}_4(\operatorname{PO}_4)_2, \operatorname{H}_2O + 4\operatorname{NH}_3 + \operatorname{H}_2O \rightarrow \operatorname{Ca}_9(\operatorname{NH}_4)_4 \operatorname{H}_{32}(\operatorname{PO}_4)_{18}, 10\operatorname{H}_2O$ 

<sup>1</sup>) Helv. 34, 884 (1951).

Il est entièrement soluble dans la liqueur de *Petermann* (citrate d'ammoniacal).

Nous envisageons la préparation du sel double  $D^{I}$  à partir de phosphorite, d'acide nitrique et d'ammoniac. Afin de pouvoir établir les conditions les plus avantageuses pour l'obtention du sel  $D^{I}$ , nous nous sommes proposé d'étudier, à 25°, son domaine de saturation dans le diagramme de solubilité du système quinaire  $Ca^{++}-NH_{4}^{+-}$ H<sup>+</sup>- $NO_{3}^{-}-PO_{4}^{---}-H_{2}O$ .

Pour la construction du diagramme de solubilité, nous adoptons les coordonnées du «diagramme général» (voir Helv. 34, 2364 (1951)), c'est-à-dire nous rapportons toutes les valeurs à 100 équivalents-g d'électrolytes contenus dans la phase liquide. La composition d'une solution saturée du système quinaire sera donc représentée de la façon suivante:

 $\left. \begin{array}{c} a \ {\rm \acute{e}quiv.} \cdot \% \ {\rm Ca}^{++} \\ b \ {\rm \acute{e}quiv.} \cdot \% \ {\rm NH}_4^+ \ (= y) \\ c \ {\rm \acute{e}quiv.} \cdot \% \ {\rm H}^+ \ (= x) \\ d \ {\rm \acute{e}quiv.} \cdot \% \ {\rm PO}_4^{---} \\ e \ {\rm \acute{e}quiv.} \cdot \% \ {\rm NO}_3^- \ (= z) \\ f \ {\rm mol.} \cdot g \ {\rm H}_2 O \ (= n) \end{array} \right\} \ d+e = 100$ 

Les valeurs de b et c sont portées sur les 2 axes horizontaux du diagramme (y et x), la valeur de e sur l'axe vertical (z). La teneur en eau f d'une solution saturée est sa «cote» (n). Elle indique le nombre de mol.-g d'eau nécessaire et suffisant pour dissoudre 100 équiv.-g d'un mélange d'électrolytes du système étudié, défini par les valeurs de x, y et z.

Le diagramme de solubilité du système quinaire, établi pour une température donnée (25°), se compose d'un certain nombre de «solides de saturation»<sup>2</sup>) dont chacun représente l'ensemble des solutions saturées d'une phase solide distincte du système.

La fig. 1 montre, en perspective, le solide de saturation du sel double  $D^{I}$  tel qu'il résulte des essais de solubilité que nous avons exécutés.

Les solutions saturées uniquement de sel  $D^{I}$  ont leur point figuratif à l'intérieur de ce solide allongé. Les surfaces qui le délimitent vers les autres régions du diagramme représentent des solutions saturées de sel double  $D^{I}$  et d'une deuxième phase solide. Les arêtes correspondent à des solutions saturées de 3 phases solides, et les points d'intersection des arêtes appartiennent à des solutions simultanément saturées de 4 phases solides.

<sup>&</sup>lt;sup>2</sup>) Helv. **33**, 2029 (1950).

Nos expériences ont permis de constater que le solide de saturation du D<sup>I</sup> est entouré des solides de saturation des sels suivants:

| phophate monoammonique | $\rm NH_4H_2PO_4$   | (symbole NH <sub>4</sub> <sup>I</sup> ) |
|------------------------|---------------------|-----------------------------------------|
| phosphate monocalcique | $CaH_4(PO)_2, H_2O$ | (symbole Ca <sup>I</sup> )              |
| phosphate bicalcique   | CaHPO <sub>4</sub>  | (symbole Ca <sup>II</sup> )             |
| nitrate d'ammonium     | $\rm NH_4NO_3$      | (symbole $\mathrm{NH_4^0}$ )            |
|                        |                     |                                         |



Fig. 1. Système quinaire  $Ca^{++}$ — $NH_4^{+}$ — $H^+$ — $NO_3^{-}$ — $PO_4^{---}$ — $H_2O \ge 25^{\circ}$ . Solide de saturation du sel double  $D^1$ .

Pour connaître l'étendue du solide de saturation du sel D<sup>I</sup>, il fallait donc déterminer les «éléments» suivants du diagramme:

| Surfaces à 2 sels:       | Lignes à 3 sels:                   |             |
|--------------------------|------------------------------------|-------------|
| $D_{a}^{I} + NH_{4}^{I}$ | $D^{I}+Ca^{I}+NH_{4}^{I}$          | (ligne I)   |
| $D^{I}+Ca^{II}$          | $D^{I}$ + $NH_{4}^{I}$ + $Ca^{II}$ | (ligne II)  |
| $D^{I}+Ca^{I}$           | $D^{I}+Ca^{I}+Ca^{II}$             | (ligne III) |
| $D^{I} + NH_{4}^{0}$     | $D^{I} + NH_{4}^{I} + NH_{4}^{0}$  | (ligne IV)  |
|                          | $D^{I}+Ca^{II}+NH_{4}^{0}$         | (ligne V)   |
|                          | $D^{I}+Ca^{I}+NH_{4}^{0}$          | (ligne VI)  |
| Points à 4 sels:         |                                    |             |
| $D^{I}+Ca^{I}+$          | $NH_4^I + NH_4^0$ (point D)        |             |
| $D^{I} + NH_{4}^{I}$     | $+ Ca^{II} + NH_4^0$ (point E)     |             |
| $D^{I}+Ca^{I}+$          | $Ca^{II} + NH_4^0$ (point F)       |             |
|                          |                                    |             |

Les points A, B et C correspondent à des solutions saturées de 3 phases solides du système limite quaternaire  $Ca^{++}-NH_4^{+}-H^{+-}$  $PO_4^{---}-H_2O$ . De là, les lignes à 3 sels I, II et III conduisent aux points invariants D, E et F de l'isotherme pour lesquels la saturation en  $NH_4NO_3$  est atteinte. Au début de notre étude, nous connaissions les lignes AB, AC et BC (déterminations exécutées par *S. Chapuis-Gottreux*<sup>1</sup>), ainsi que la ligne AD qui avait été établie par *E. Lauber*<sup>3</sup>). Il nous incombait donc d'étudier les autres éléments indiqués ci-dessus.

## Identification des phases solides.

Chaque essai de saturation a produit une phase liquide, dans laquelle nous avons dosé les constituants  $Ca^{++}$ ,  $NH_4^+$ ,  $H^+$ ,  $NO_3^-$  et  $PO_4^{---}$ , et un corps de fond que nous avons examiné en vue de reconnaître les phases solides qui le constituaient.

L'identification des phases solides se faisait selon différentes méthodes:

a) Analyse chimique du corps de fond humide et application de la méthode des restes pour établir la composition du corps de fond exempt de solution-mère.

b) Examen microscopique.

c) Analyse rœntgenographique.

A titre d'exemples, nous reproduisons, à la fig. 2, des microphotographies de corps de fond composés respectivement de 2, 3 et 4 phases solides.



a Surface à 2 sels  $D^{I}$  +  $Ca^{I}$ 

aiguilles: DI plaques: Ca<sup>I</sup>



b Ligne à 3 sels  $D^{I} + Ca^{I} + Ca^{II}$ 

aiguilles: DI plaques: Ca<sup>I</sup> petits cristaux: Ca<sup>II</sup>



Point à 4 sels  $D^{I} + Ca^{I} + Ca^{I} + Ca^{II} + NH_{4}^{0}$ aiguilles:  $D^{I}$ plaques:  $Ca^{I}$ petits cristaux:  $Ca^{II}$ gros cristaux rongés:  $NH_{4}^{0}$ 

Fig. 2.

Corps de fond d'essais de saturation.

L'analyse rœntgenographique nous a rendu de précieux services surtout pour l'identification du phosphate bicalcique, dont on connaît une forme anhydre et un dihydrate.

Les spectres de diffraction de la fig. 3 ont été obtenus à l'aide d'une caméra quadruple «Nonius» de 229,2 mm de diamètre\*). Ils

<sup>3</sup>) Helv. 36, 1971 (1953).

\*) L'appareil de diffraction de rayons X a été acquis au moyen d'un subside du Fonds National Suisse pour la Recherche scientifique. correspondent aux composés suivants:  $NH_4H_2PO_4(I)$ ;  $CaHPO_4(II)$ ;  $CaHPO_4, 2H_2O(III)$ ; sel double  $D^{I}(IV)$ .

En comparant les spectres des divers corps de fond avec les spectres étalons de la fig. 3, nous avons pu établir d'une façon très nette que, dans nos essais de saturation, le phosphate bicalcique apparaissait toujours sous sa forme anhydre et non pas à l'état du dihydrate.



Spectres de diffraction de NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub>, CaHPO<sub>4</sub>, CaHPO<sub>4</sub>, 2H<sub>2</sub>O et sel double D<sup>1</sup>.

Résultats.

Dans les tableaux I à IV, nous indiquons la composition des solutions saturées qui ont été obtenues lors de l'étude du solide de saturation du sel double D<sup>I</sup> à 25°.

| Tableau I.                                                |       |
|-----------------------------------------------------------|-------|
| Système quinaire Ca++NH <sub>4</sub> +H+NO <sub>3</sub> - |       |
| Solutions saturées de 4                                   | sels. |

| Nº                                                                      | éq%<br>Ca++ | éq%<br>NH <sub>4</sub> + | éq%<br>H+ | éq%<br>NO <sub>3</sub> - | éq%<br>PO <sub>4</sub> | molg<br>H <sub>2</sub> O | Phases solides                                                     |  |
|-------------------------------------------------------------------------|-------------|--------------------------|-----------|--------------------------|------------------------|--------------------------|--------------------------------------------------------------------|--|
| D*)                                                                     | 21,6        | 56,5                     | 21,9      | 73,8                     | 26,2                   | 143,3                    | $\mathbf{D^I} + \mathbf{NH_4^I} + \mathbf{Ca^I} + \mathbf{NH_4^0}$ |  |
| 1                                                                       | 21,0        | 68,3                     | 10,7      | 86,4                     | 13,6                   | 173,8                    |                                                                    |  |
| 2                                                                       | 21,2        | 67,8                     | 11,0      | 86,1                     | 13,9                   | 174,1                    | $D^{1} + NH_{4}^{1} + Ca^{11} + NH_{4}^{0}$                        |  |
| E (moy. 12)                                                             | 21,1        | 68,0                     | 10,9      | 86,3                     | 13,7                   | 174,0                    | )                                                                  |  |
| 3                                                                       | 31,5        | 58,1                     | 10,4      | 87,4                     | 12,6                   | 153,0                    | 1                                                                  |  |
| 4                                                                       | 31,9        | 58,2                     | 9,9       | 87,8                     | 12,2                   | 151,9                    | $D^{I} + Ca^{I} + Ca^{I1} + NH_{4}^{0}$                            |  |
| F (moy. 3-4)                                                            | 31,7        | 58,1                     | 10,2      | 87,6                     | 12,4                   | 152,5                    | J                                                                  |  |
| *) Valeurs établies par E. Lauber, thèse, Lausanne 1950 <sup>3</sup> ). |             |                          |           |                          |                        |                          |                                                                    |  |

Remarque: Dans notre publication précédente<sup>4</sup>), nous avons indiqué, pour le point F, des coordonnées qui diffèrent des valeurs ci-dessus. A plusieurs reprises, nous avons observé que les équilibres de saturation en phosphate bicalcique ne s'établissent que très difficilement. La divergence entre ces valeurs peut provenir du fait que l'état de saturation stable en Ca<sup>II</sup> n'était pas entièrement atteint.

4) Helv. 39, 1130 (1956).

| Solutions saturées de 3 sels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |            |                |                                                                |                                                                |                      |                                                       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------|----------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------|-------------------------------------------------------|--|
| 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | éq%                                                    | éq%        | éq%            | éq%                                                            | éq%                                                            | molg                 | Dhases solider                                        |  |
| Nº.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ca++                                                   | NH4+       | $\mathbf{H}^+$ | $NO_3^-$                                                       | PÔ4                                                            | H <sub>2</sub> O     | r hases solides                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |            |                |                                                                |                                                                |                      |                                                       |  |
| $A^*$ 56 138 806 - 1000 1378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |            |                |                                                                |                                                                |                      |                                                       |  |
| 5*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0                                                   | 21.1       | 68.9           | 14.6                                                           | 85.4                                                           | 158.6                |                                                       |  |
| 6*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.9                                                   | 31.6       | 53.5           | 34.4                                                           | 65.6                                                           | 175.4                |                                                       |  |
| ()<br>7*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.6                                                   | 38.8       | 43.6           | 46.9                                                           | 53.1                                                           | 173.8                | $D^1 + NH_4^1 + Ca^1$                                 |  |
| 8*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.8                                                   | 45.6       | 34.6           | 57.9                                                           | 42.1                                                           | 169.6                |                                                       |  |
| 9*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21,2                                                   | 54,0       | 24,8           | 70,6                                                           | 29,4                                                           | 147,5                | )                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | II. Ligr   | ne à 3 sels    | $D^{I} + NH$                                                   | $\mathbf{A}^{\mathrm{I}} + \mathrm{C}\mathbf{a}^{\mathrm{II}}$ |                      |                                                       |  |
| B**)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,0                                                    | 17,7       | 74.3           | _                                                              | 100,0                                                          | 245,0                |                                                       |  |
| $\overline{10}'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0                                                   | 23.3       | 66.7           | 10,9                                                           | 89,1                                                           | 276,7                |                                                       |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.4                                                   | 25,9       | 62,7           | 16,7                                                           | 83,3                                                           | 277,0                |                                                       |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11,8                                                   | 26,9       | 61,3           | 18,9                                                           | 81,1                                                           | 282,2                |                                                       |  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12,3                                                   | 28,0       | 59,7           | 21,2                                                           | 78,8                                                           | 281,5                |                                                       |  |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12,6                                                   | 29,3       | 58,1           | 23,2                                                           | 76,8                                                           | 286,9                | 1                                                     |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13,8                                                   | 34,1       | $52,\!1$       | 30,7                                                           | 69,3                                                           | 315,1                |                                                       |  |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14,6                                                   | 35,6       | 49,8           | 34,1                                                           | 65,9                                                           | 310,8                |                                                       |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14,9                                                   | 36,7       | 48,4           | 35,9                                                           | 64,1                                                           | 311,1                | $D^{1} + NH_{4}^{1} + Ca^{11}$                        |  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18,6                                                   | 48,4       | 33,0           | 56,7                                                           | 43,3                                                           | 305,1                | -                                                     |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18,7                                                   | 48,4       | 32,9           | 57,1                                                           | 42,9                                                           | 293,2                |                                                       |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19,2                                                   | 50,8       | 30,0           | 60,8                                                           | 39,2                                                           | 291,0                |                                                       |  |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19,4                                                   | 50,9       | 29,7           | 61,4                                                           | 38,6                                                           | 288,7                |                                                       |  |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19,4                                                   | 52,1       | 28,5           | 62,9                                                           | 37,1                                                           | 289,2                |                                                       |  |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20,3                                                   | 58,4       | 21,3           | 72,2                                                           | 27,8                                                           | 272,8                |                                                       |  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20,5                                                   | 60,8       | 18,7           | 75,4                                                           | 24,6                                                           | 265,6                | 11                                                    |  |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20,7                                                   | 67,5       | 11,8           | 84,8                                                           | 15,2                                                           | 208,1                | <b>)</b>                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | III. Li    | gne à 3 se     | $\mathbf{b} = \mathbf{D}^{\mathbf{I}} + \mathbf{C} \mathbf{c}$ | $a^{I} + Ca^{II}$                                              |                      |                                                       |  |
| C**)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14,6                                                   | 7,5        | 77,9           | -                                                              | 100,0                                                          | 263,0                | 1                                                     |  |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15,1                                                   | 8,3        | 76,6           | 1,7                                                            | 98,3                                                           | 264,4                |                                                       |  |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16,3                                                   | 9,4        | 74,3           | 5,0                                                            | 95,0                                                           | 270,8                |                                                       |  |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17,5                                                   | 9,5        | 73,0           | 6,4                                                            | 93,6                                                           | 279,9                |                                                       |  |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17,7                                                   | 9,4        | 72,9           | 6,5                                                            | 93,5                                                           | 283,1                |                                                       |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19,0                                                   | 10,6       | 70,4           | 10,2                                                           | 89,8                                                           | 289,8                |                                                       |  |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20,4                                                   | 11,4       | 68,2           | 13,1                                                           | 86,9                                                           | 298,4                | $D^{I} + Ca^{I} + Ca^{II}$                            |  |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20,8                                                   | 12,7       | 60,0           | 10,0                                                           | 84,0                                                           | 290,4                | 2 + 0a + 0a                                           |  |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23,1                                                   | 13,8       | 02,5           | 20,8                                                           | 75.0                                                           | 290,0                |                                                       |  |
| 34<br>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23,4                                                   | 10,0       | 59.4           | 24,1                                                           | 15,9                                                           | 294,2                |                                                       |  |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20,7                                                   | 20,9       | 387            | 51.8                                                           | 48.2                                                           | 298,0                |                                                       |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31,9                                                   | 49,4       | 22.5           | 79.2                                                           | 27.8                                                           | 235,6                |                                                       |  |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33 2                                                   | 53.8       | 13.0           | 84.0                                                           | 16.0                                                           | 178.5                |                                                       |  |
| $\frac{100}{1000} = \frac{1000}{1000} = \frac{1000}{1000}$ |                                                        |            |                |                                                                |                                                                |                      | /                                                     |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 01 0                                                 | 1 500      | 1 90 9         | i 7≍0                                                          | 4 1 9/1                                                        | 1 140 9              |                                                       |  |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21,0                                                   | 08,Z       | 20,2           | 10,9                                                           | 10.6                                                           | 149,2                | II DI + NH I + NH 0                                   |  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21,0                                                   | 66 6       | 12.0           | 85.1                                                           | 14.9                                                           | 168-2                |                                                       |  |
| <b>*</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |            |                |                                                                |                                                                |                      |                                                       |  |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28,6                                                   | 60,6       | 10,8           | 86,7                                                           | 13,3                                                           | 157,9                | $\mathbf{D^{I}}+\mathbf{Ca^{II}}+\mathbf{NH_{4}^{0}}$ |  |
| *) V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | aleurs éts                                             | ablies par | E. Laube       | r. thèse. I                                                    | ausanne                                                        | 1950 <sup>3</sup> ). | <del></del>                                           |  |
| **) V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | aleurs éta                                             | ablies par | S. Chapu       | is-Gottreu                                                     | x, thèse, $1$                                                  | Lausanne             | 1949 <sup>1</sup> ).                                  |  |

 $\begin{array}{c} \textbf{Tableau II.}\\ \text{Système quinaire Ca}^{++}\_-\text{NH}_4^+\_-\text{H}^+\_-\text{NO}_3^-\_-\text{PO}_4^{----}\_-\text{H}_2\text{O} \& 25^{0}.\\ \text{Solutions saturées de 3 sels.} \end{array}$ 

| Nº | éq%<br>Ca++ | éq%<br>NH <sub>4</sub> + | éq%<br>H+   | éq%<br>NO <sub>3</sub> -                             | éq%<br>PO <sub>4</sub> — | molg<br>H <sub>2</sub> O | Phases solides                                     |
|----|-------------|--------------------------|-------------|------------------------------------------------------|--------------------------|--------------------------|----------------------------------------------------|
|    |             | VI. Lig                  | ne à 3 sels | $\mathbf{D}^{\mathbf{I}} + \mathbf{Ca}^{\mathbf{I}}$ | $+ NH_4^0$               |                          |                                                    |
| 43 | 22,0        | 57,0                     | 21,0        | 75,0                                                 | 25,0                     | 146,4                    |                                                    |
| 44 | 21,6        | 57,4                     | 21,0        | 74,9                                                 | 25,1                     | 147,4                    |                                                    |
| 45 | 22,0        | 57,5                     | 20,5        | 75,5                                                 | 24,5                     | 147,6                    |                                                    |
| 46 | 23,0        | 57,6                     | 19,4        | 76,9                                                 | 23,1                     | 148,1                    | $\left  \right\rangle D^{2} + Ca^{2} + NH_{4}^{2}$ |
| 47 | 26,9        | 58,6                     | 14,5        | 82,5                                                 | 17,5                     | 153,4                    |                                                    |
| 48 | 28,8        | 58,7                     | 12,5        | 84,7                                                 | 15,3                     | 149,7                    | ]                                                  |
|    |             |                          | ······      |                                                      | ·                        |                          | ·/                                                 |

Tableau II (suite).

| Tableau III.     |                                                                                |  |  |  |  |  |
|------------------|--------------------------------------------------------------------------------|--|--|--|--|--|
| Système quinaire | Ca++NH <sub>4</sub> +H+NO <sub>3</sub> PO <sub>4</sub> H <sub>2</sub> O à 25°. |  |  |  |  |  |
|                  | Solutions saturées de 2 sels.                                                  |  |  |  |  |  |

| Nº    | éq%<br>Ca++ | éq%<br>NH <sub>4</sub> + | éq%<br>H+  | éq%<br>NO <sub>3</sub> -                    | éq%<br>PO <sub>4</sub> | molg<br>H <sub>2</sub> O | Phases solides      |
|-------|-------------|--------------------------|------------|---------------------------------------------|------------------------|--------------------------|---------------------|
|       |             |                          |            |                                             |                        |                          |                     |
| 49    | 7,9         | 17,0                     | 75,1       |                                             | 100,0                  | 223,9                    |                     |
| 50*)  | 8,5         | 18,0                     | 73,5       | 5,3                                         | 94,7                   | 200,2                    |                     |
| 51*)  | 10,0        | 21,5                     | 68,5       | 15,3                                        | 84,7                   | 160,6                    |                     |
| 52*)  | 12,6        | 26,7                     | 60,7       | 22,1                                        | 77,9                   | 228,0                    |                     |
| 53*)  | 13,6        | 28,5                     | 57,9       | 28,6                                        | 71,4                   | 179,4                    | <b>[</b>            |
| 54*)  | 15,7        | 33,4                     | 50,9       | 37,8                                        | 62,2                   | 177,4                    |                     |
| 55*)  | 16,7        | 37,3                     | 46,0       | 41,5                                        | 58,5                   | 237,6                    | $\int D^2 + NH_4^2$ |
| 56    | 17,2        | 37,6                     | 45,2       | 42,3                                        | 57,7                   | 244,6                    |                     |
| 57    | 18,1        | 38,6                     | 43,3       | 46,2                                        | 53,8                   | 198,4                    |                     |
| 58*)  | 20,2        | 51,8                     | 28,0       | 63,6                                        | 36,4                   | 267,8                    |                     |
| 59    | 21,8        | 57,7                     | 20,5       | 74,8                                        | 25,2                   | 186,3                    |                     |
| 60    | 21,9        | 62,1                     | 16,0       | 80,2                                        | 19,8                   | 182,7                    | ]                   |
|       |             | b) S                     | urface à 2 | sels $D^{I}$ +                              | Ca <sup>II</sup>       |                          |                     |
| 61    | 12.2        | 10.3                     | 77.5       | I -                                         | 100.0                  | 243.0                    | 3                   |
| 62    | 11.2        | 11.9                     | 76.9       |                                             | 100.0                  | 244.1                    |                     |
| 63    | 10.2        | 13.6                     | 76.2       | - 1                                         | 100.0                  | 240.8                    |                     |
| 64    | 9,1         | 15.4                     | 75.5       | _                                           | 100.0                  | 238.8                    | DI AU               |
| 65    | 18,1        | 17.1                     | 64.8       | 17.6                                        | 82.4                   | 279,2                    | $D^{-}+Ca^{}$       |
| 66    | 16.3        | 26.0                     | 57.7       | 25,2                                        | 74.8                   | 287,8                    |                     |
| 67    | 26,1        | 36,2                     | 37,7       | 51,9                                        | 48,1                   | 303.6                    |                     |
| 68    | 28,7        | 55,3                     | 16,0       | 80,0                                        | 20,0                   | 217,5                    |                     |
|       |             | c) S                     | urface à 2 | $2 \text{ sels } \mathbf{D}^{\mathbf{I}} +$ | - Ca <sup>I</sup>      | 1 ,                      |                     |
| 69*)  | 7.1         | 16.0                     | 76.9       | 4.8                                         | 95.2                   | 145.0                    |                     |
| 70*)  | 11.1        | 12.8                     | 76.1       | 4.9                                         | 95.1                   | 200.0                    |                     |
| 71    | 19,3        | 13,2                     | 67.5       | 14.5                                        | 85,5                   | 278.4                    |                     |
| 72    | 16,4        | 17,5                     | 66,1       | 17,5                                        | 82,5                   | 233,9                    | 11                  |
| 73    | 16,6        | 17,5                     | 65,9       | 17,7                                        | 82,3                   | 235,6                    | 1                   |
| 74*)  | 15,7        | 20,2                     | 64,1       | 20,0                                        | 80,0                   | 216,0                    |                     |
| 75    | 23,0        | 16,6                     | 60,4       | 23,7                                        | 76,3                   | 293,8                    | $D^{I}+Ca^{I}$      |
| 76    | 20,5        | 22,8                     | 56,7       | 29,6                                        | 70,4                   | 248,0                    | 1 1 1 0 1           |
| 77*)  | 18,0        | 30,0                     | 52,0       | 35,8                                        | 64,2                   | 201,7                    |                     |
| 78    | 17,2        | 31,7                     | 51,1       | 37,8                                        | 62,2                   | 193,0                    |                     |
| 79*)  | 22,5        | 40,3                     | 37,2       | 54,4                                        | 45,6                   | 195,8                    |                     |
| 80    | 32,6        | 40,1                     | 27,3       | 66,4                                        | 33,6                   | 250,4                    |                     |
| 81*)  | 24,9        | 48,6                     | 26,5       | 67,9                                        | 32,1                   | 183,5                    | 7                   |
|       |             | d) Su                    | rface à 2  | sels $D^{I} + 1$                            | NH40                   |                          |                     |
| 82    | 27,6        | 59,6                     | 12,8       | 84,3                                        | 15,7                   | 155,2                    | DI NH 0             |
| 83    | 24,5        | 62,3                     | 13,2       | 83,7                                        | 16,3                   | 162,5                    | $   D + N \Pi_4$    |
| *) Va | leurs état  | olies par <i>I</i>       | E. Lauber, | thèse, La                                   | usanne 1               | $950^{3}$ ).             |                     |

Tableau IV.

| Solutions saturées de sel double $D^{I}$ . |                                      |                                      |                                      |                                      |                                      |                                           |              |
|--------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|--------------|
| Nº                                         | éq%<br>Ca++                          | éq%<br>NH <sub>4</sub> +             | éq%<br>H+                            | éq%<br>NO <sub>3</sub> -             | éq%<br>PO <sub>4</sub>               | molg<br>H <sub>2</sub> O                  | Phase solide |
| 84<br>85<br>86<br>87<br>88                 | 23,4<br>19,3<br>18,2<br>17,1<br>29,3 | 20,1<br>24,7<br>30,3<br>36,3<br>38,7 | 56,5<br>56,0<br>51,5<br>46,6<br>32,0 | 29,1<br>31,0<br>35,5<br>39,0<br>59,2 | 70,9<br>69,0<br>64,5<br>61,0<br>40,8 | 289,8<br>243,3<br>245,5<br>291,2<br>303,4 | DI           |

Système quineire Catt NH + H+ NO - PO ---- HO à 250

## Diagrammes.

Nous avons choisi pour le diagramme de solubilité un prisme à base triangulaire dont les deux axes horizontaux (éq.-%  $H^+ = x$ ; éq.-%  $NH_4^+ = y$ ) forment un angle de 90°. La fig. 4 montre les projections du solide de saturation sur la base (I) et sur la paroi verticale postérieure du prisme (II).

Les diverses lignes à 3 sels ont été construites à l'aide des essais Nº 1 à 48 des tableaux I et II. Ces courbes nous renseignent sur l'étendue des diverses surfaces à 2 sels.

Le tableau III fournit des indications quant à la forme des diverses surfaces à 2 sels. A l'aide des valeurs de ce tableau, nous avons construit, dans la projection I, les «isonitrates» pour respectivement 10, 20, ..., 80 éq.-%  $NO_3^-$ .

Par exemple, l'isonitrate 30 est la surface en forme de triangle qui résulte d'une coupe à travers le solide de saturation du D<sup>I</sup> par un plan horizontal au niveau correspondant à 30 éq.-% NO3-. Elle est délimitée par les 3 lignes d'intersection de ce plan avec les surfaces à 2 sels  $\overline{D^{I}} + NH_{4}^{I}$ ,  $\overline{D^{I}} + Ca^{II}$  et  $D^{I} + Ca^{I}$ . On reconnaît, dans la fig. 4 I, que la surface à 2 sels  $D^{I} + Ca^{I}$  (surface ADFC) est légèrement bombée vers l'extérieur du solide de saturation du DI tandis que la surface à 2 sels  $D^{I} + Ca^{II}$  (surface BEFC) est incurvée vers l'intérieur. La surface à 2 sels  $D^{I} + NH_{A}^{I}$  (surface ADEB) est également légèrement incurvée vers l'intérieur.

La fig. 4 ne fournit aucun renseignement quant à la teneur en eau des diverses solutions saturées de sel D<sup>I</sup>. Pour établir les cotes d'eau de ces solutions, on utilise la fig. 5 dans laquelle nous avons tracé des projections d'«isohydres» dans les plans de projection I et II.

Par exemple, toutes les solutions saturées de D<sup>I</sup> qui renferment 250 mol.-g H<sub>2</sub>O pour 100 éq.-g d'électrolytes dissous, ont leur point figuratif sur une surface (courbée), qui traverse le solide de saturation du D<sup>I</sup> du diagramme spatial. Cette surface («isohydre 250») coupe les diverses surfaces à 2 sels du solide de saturation. Nos essais de solubilité permettent de construire les lignes d'intersection de l'isohydre 250 avec ces surfaces.

La fig. 5 I, montre, en trait plein, la ligne d'intersection de l'isohydre 250 avec la surface à 2 sels  $D^{I} + Ca^{I}$  (surface ADFC). Elle



(Surfaces à 2 sels et isonitrates.)

part de la ligne AC très près du point C et atteint la ligne à 3 sels  $D^1 + Ca^I + Ca^{II}$  (ligne CF) environ aux  $\frac{3}{4}$  de cette ligne.

D'autre part, l'isohydre 250 coupe la surface à 2 sels  $D^{I} + Ca^{II}$  (surface BEFC). L'intersection est marquée en pointillé dans la fig. 5 I. Partant de la ligne CF, elle atteint la ligne à 3 sels  $D^{I} + Ca^{II} + NH_{4}^{I}$  (ligne BE) à petite distance du point E.



(Surfaces à 2 sels et isohydres.)

Puisque les projections des lignes à 3 sels AD et BE sont presque confondues dans la fig. 5 I, nous avons préféré projeter la ligne d'intersection de l'isohydre 250 avec la surface à 2 sels  $D^{I} + NH_{4}^{I}$  (surface ADEB) sur le plan de projection vertical. On voit, dans la fig. 5 II, l'isohydre 250 de la surface à 2 sels  $D^{I} + NH_{4}^{I}$ . Elle quitte la ligne BE au voisinage du point E, passe vers le milieu de la surface ADEB et revient à la ligne à 3 sels EB qu'elle atteint tout près du point B.

L'isohydre 250 coupe ensuite une deuxième fois la surface à  $2 \text{ sels } D^{I} + Ca^{II}$  (ligne pointillée marquée 250 dans la fig. 5 I, entre les points B et C).

Finalement, l'isohydre 250 atteint le triangle de base ABC représentant le système quaternaire  $Ca^{++} - NH_4^+ - H^+ - PO_4^{---} - H_2O$ . L'intersection conduit, très près du point C, de la ligne BC à la ligne AC.

Dans la fig. 5 I, nous avons construit l'intersection des isohydres 150, 175, 200, 225, 250, 275 et 300 avec les surfaces à 2 sels  $D^{I} + Ca^{I}$  et  $D^{I} + Ca^{II}$ , tandis que, dans la fig. 5 II, seules les isohydres 150, 200, 250 et 300 sont marquées dans la surface à 2 sels  $D^{I} + NH_{4}^{I}$ .

Signalons les particularités suivantes:

1º L'isohydre 150 coupe les surfaces à 2 sels  $D^{I} + Ca^{I}$ ,  $D^{I} + NH_{4}^{I}$  et  $D^{I} + NH_{4}^{I}$  au voisinage immédiat du point à 4 sels D (voir fig. 5 I). Elle coupe les surfaces à 2 sels  $D^{I} + Ca^{I}$  et  $D^{I} + NH_{4}^{I}$  une deuxième fois très près du point A (voir fig. 5 I et 5 II).

2° L'isohydre 175 produit également 2 coupes en forme de triangles allongés; ces triangles se rapprochent le long de la ligne à 3 sels  $D^{I} + Ca^{I} + NH_{4}^{I}$ .

 $3^{\circ}$  Les coupes des isohydres 200, 225, 250 et 275 sont des surfaces ininterrompues qui s'étendent de la région des points A, B et C vers celle des points à 4 sels D, E et F.

4° Finalement, l'isohydre 300 donne 2 régions d'intersection distinctes. Une première fois, elle coupe les surfaces à 2 sels  $D^{I} + Ca^{II}$ et  $D^{I} + NH_{4}^{I}$  dans la partie postérieure du solide de saturation; la deuxième région, très peu étendue, se trouve au premier tiers de la ligne CF et concerne les surfaces à 2 sels  $D^{I} + Ca^{I}$  et  $D^{I} + Ca^{II}$ .

## Emploi des diagrammes.

A l'aide des diagrammes des fig. 4 et 5, on peut résoudre de nombreux problèmes concernant la solubilité du sel double  $D^{I}$  et la préparation de ce composé. L'exemple numérique suivant montre la manière d'utiliser les diagrammes. Admettons qu'on dispose d'une solution  $L_0$  de la composition suivante:

# $\begin{array}{c} 1^{er} \ problème: \ Cette \ Solution \ L_0 \ est-elle \ non \ saturée, \ saturée \ ou \ sursaturée \\ a \ la \ température \ de \ 25^{9}? \end{array}$

On établit, dans le diagramme de la fig. 4, la position du point figuratif de cette solution (sans tenir compte de la cote d'eau). Etant donné que la Solution  $L_0$  renferme 35 éq.-% NO<sub>3</sub><sup>--</sup>, son point figuratif se trouve dans le plan horizontal de l'isonitrate 35 (voir fig. 6a).

On construit, par interpolation dans la fig. 4 I, l'isonitrate du solide de saturation du sel D<sup>I</sup> (intersection du plan horizontal au niveau de 35 éq. % NO<sub>3</sub><sup>-</sup> avec le solide de saturation). La fig. 4 fournit directement la position des points d'intersection des trois lignes à 3 sels (points  $\alpha_1$ ,  $\beta_1 \in \gamma_1$ ) d'abord dans la projection II, puis dans la projection I. Les lignes  $\alpha_1\beta_1$ ,  $\beta_1\gamma_1 \in \gamma_1\alpha_1$  de l'intersection des trois surfaces à 2 sels ont pratiquement la même faible courbure qu'aux niveaux voisins de 30 et 40 éq. % NO<sub>3</sub><sup>-</sup>. L'isonitrate  $\alpha_1\beta_1\gamma_1$  est dessinée dans la fig. 6 b à une échelle 6 fois plus grande que dans la fig. 6a.

On remarque que le point figuratif de la Solution  $L_0$  (qui est en même temps le point figuratif du mélange M) se trouve à l'intérieur de la surface triangulaire  $\alpha_1\beta_1\gamma_1$ . On en conclut que, si la Solution  $L_0$  était saturée, elle serait saturée en sel double D<sup>I</sup> seul.

Il s'agit de savoir si les 400 mol.-g  $H_2O$  de la Solution  $L_0$  dépassent la quantité d'eau nécessaire pour la dissolution intégrale des 100 éq.-g d'électrolytes du mélange M.

La fig. 5 permet de construire, sur les côtés  $\alpha_1\beta_1$ ,  $\beta_1\gamma_1$  et  $\gamma_1\alpha_1$  de l'isonitrate 35, des points de repère pour le passage des isohydres 200, 225, 250, 275 et 300. Les lignes d'intersection de ces isohydres avec l'isonitrate 35 sont pratiquement des droites; elles sont tracées dans la fig. 6 b.

Le point figuratif du mélange d'électrolytes M se trouve entre les isohydres 275 et 300. L'interpolation exacte donne pour le point M (= point  $L_0$ ) une cote d'eau de 285 mol.-g H<sub>2</sub>O, ce qui signifie que les 100 éq.-g d'électrolytes de la composition M exigent, à 25<sup>o</sup>, 285 mol.-g H<sub>2</sub>O pour la dissolution complète (Solution L<sub>1</sub>). Puisque la Solution  $L_0$  renferme 400 mol.-g H<sub>2</sub>O, on conclut qu'il s'agit d'une solution non saturée.

 $2^e$  problème: Combien d'eau de la Solution  $L_0$  doit-on évaporer, à 25°, pour atteindre l'état de saturation en sel double  $D^{I}$  (Solution  $L_1$ ).

Il y a dans la Solution  $L_0$  400 mol.-g  $H_2O$  (= 7206 g  $H_2O$ ). L'état de saturation est atteint lorsque la solution ne renferme que 285 mol.-g  $H_2O$  (= 5135 g  $H_2O$ ). Il faut donc évaporer

 $400-285 = 115 \text{ mol.-g H}_2O = 2071 \text{ g H}_2O$ 

ce qui représente 16,7% du poids de la solution initiale  $L_0$ .

3<sup>e</sup> problème: Combien de sel double D<sup>I</sup> pur (c'est-à-dire exempt d'autres sels du système) peut-on obtenir en évaporant, à 25<sup>9</sup>, la Solution L<sub>1</sub> saturée de D<sup>I</sup>? Quelle est la quantité d'eau qu'on doit évaporer à cet effet?

L'évaporation d'eau de la Solution  $L_1$  provoque la cristallisation de D<sup>I</sup>. Le point figuratif de la solution restante se déplace, dans le diagramme de la fig. 4, sur une droite qui passe par le point figuratif du sel D<sup>I</sup> solide et par celui de la Solution de départ  $L_1$ . Il faut arrêter l'évaporation au moment où la solution restante devient saturée d'une deuxième phase solide, c'est-à-dire lorsque le point figuratif de la solution atteint une surface à 2 sels délimitant le solide de saturation du  $D^{I}$ .

Pour résoudre le problème, on doit construire la trajectoire d'évaporation de la Solution  $L_1$ . Celle-ci suit une droite g qui passe par les points figuratifs de  $D^I$  et de  $L_1$ . Il faut établir la position du point  $L_2$  où cette droite quitte le solide de saturation du  $D^I$ .





Cette construction se fait à l'aide d'un plan  $\Phi$  dans lequel est située la droite g et qui est perpendiculaire au triangle de base. La fig. 6 montre les projections g' et g'' de cette droite, ainsi que la trace du plan  $\Phi$  dans la première projection. On établit l'intersection des lignes à 3 sels AD, BE et CF avec le plan  $\Phi$  (points Q, R et S). En reliant, dans la  $2^{e}$  projection, les points Q'', R'' et S'' par des droites, on obtient, avec une précision suffisante, la surface d'intersection du plan  $\Phi$  avec le solide de saturation du D<sup>I</sup>.

La droite g atteint la ligne SQ au point  $L_2$ . Ce point  $L_2$  est le point figuratif de la solution saturée de  $D^{I} + Ca^{I}$  obtenue par évaporation de la Solution  $L_{1}$  et cristallisation du sel DI seul.

La construction exacte de la position de L<sub>2</sub> donne, pour la coordonnée verticale, la valeur de 37,5 éq.-%  $NO_3^-$ ; on en déduit la composition suivante de la Solution  $L_2$ : 20,1 éq.-% Ca++; 29,5 éq.-% NH<sub>4</sub>+; 50,4 éq.-% H+; 37,5 éq.-% NO<sub>3</sub>-; 62,5 éq.-% PO<sub>4</sub>---.

Pour obtenir la cote d'eau de cette solution, on utilise les isohydres de la surface à 2 sels  $D^{I} + Ca^{I}$  construites, pour les valeurs de 150, 175, 200, 225, 250, 275 et 300, dans la fig. 5 I. Ces isohydres sont représentées, à une échelle 6 fois plus grande, dans la fig. 6 b. L'interpolation fournit pour le point L<sub>2</sub>, qui se trouve à l'intersection de la droite g avec l'isonitrate 37,5 de la surface à 2 sels  $D^{I} + Ca^{I}$ , une cote d'eau de

#### 221 mol.-g H<sub>2</sub>O

Connaissant la composition de la Solution initiale  $L_1$  et de la Solution finale  $L_2$ , on peut maintenant calculer la quantité de sel précipité et la quantité d'eau à évaporer.

On avait utilisé sous forme de Solution L<sub>1</sub> 100 éq.-g d'électrolytes contenant 35,0 éq.-g $\mathrm{NO_3^-}$  et 65,0 éq.-g  $\mathrm{PO_4^{---}}.$ 

La Solution finale  $L_2$  contient

pour 37,5 éq.-g NO<sub>3</sub><sup>-</sup>  $\rightarrow$  62,5 éq.-g PO<sub>4</sub><sup>---</sup> donc pour 35,0 éq.-g NO<sub>3</sub><sup>-</sup>  $\rightarrow$  62,5 · 35,0/37,5 = 58,3 éq.-g PO<sub>4</sub><sup>---</sup>

Il y a, par conséquent, élimination, sous forme de sel D<sup>I</sup>, de

$$65,0-58,3 = 6,7$$
 éq.-g PO<sub>4</sub>---

Puisque 1 mol.-g de sel D<sup>I</sup> (poids moléculaire 2355) renferme 54 éq.-g  $PO_4^{---}$ , il y a cristallisation de

6,7/54 = 0,124 mol.-g de sel double D<sup>I</sup>,

ce qui correspond à

 $0.124 \cdot 2355 = 292$  g de sel double D<sup>I</sup> cristallisé.

Partant de 100 éq.-g d'électrolytes sous forme de Solution L<sub>1</sub>, on a obtenu

100-6.7 = 93.3 éq.-g d'électrolytes dans la Solution L<sub>2</sub>

qui renferment

#### $221 \cdot 93,3/100 = 206 \text{ mol.-g H}_20.$

Pour passer de la Solution  $L_1$  à la Solution  $L_2$ , il faut éliminer

$$85 - 206 = 79 \text{ mol.-g H}_2\text{O}$$

Avec les 0,124 mol.-g de sel D<sup>I</sup> solide, on élimine  $10 \cdot 0,124 = 1,2$  mol.-g H<sub>2</sub>O sous forme d'eau de cristallisation.

La quantité d'eau à évaporer, à 25°, est donc

79 
$$-1.2 = 77.8 \text{ mol.-g H}_2\text{O}$$

ou 77,8.18 = 1400 g H<sub>2</sub>0.

4<sup>e</sup> problème: Quelle est l'évolution du corps de fond et de la phase liquide lorsqu'on évapore la solution au-delà du point  $L_2$ ?

La Solution  $L_2$  est saturée des deux phases solides D<sup>I</sup> et Ca<sup>I</sup>. L'élimination d'eau provoque la cristallisation d'une certaine quantité de Ca<sup>I</sup>, mais la trajectoire de la phase liquide ne peut pas quitter le domaine de saturation simultanée en DI + CaI et pénétrer à l'intérieur du solide de saturation du Ca<sup>I</sup> aussi longtemps que le corps de fond renferme

du  $D^{I}$ . La cristallisation de Ca<sup>I</sup> est donc accompagnée d'une redissolution du  $D^{I}$  primitivement précipité (la saturation en  $D^{I}$  est incongruente).

Pour établir la composition de la phase liquide (Solution  $L_3$ ) qui est obtenue au moment où tout le D<sup>I</sup> est redissous, on opère de la façon suivante.

Le point figuratif de la Solution  $L_3$  est situé d'une part sur la surface à 2 sels  $D^I + Ca^I$ , d'autre part sur la droite h qui passe par le point figuratif de la phase solide (donc du phosphate monocalcique) et le point  $L_0$  de la solution d'électrolytes initiale. La construction se fait selon le même procédé que pour l'intersection de la droite g avec cette même surface à 2 sels.

On établit donc l'intersection du solide de saturation du D<sup>I</sup> avec un plan vertical  $\Psi$  passant par h. Dans la projection II, on obtient un triangle dont les sommets T, U et V correspondent au passage des trois lignes à 3 sels par le plan  $\Psi$ . L'intersection de la droite h avec le côté du triangle représentant des solutions simultanément saturées de D<sup>I</sup> + Ca<sup>I</sup> est le point figuratif de la Solution L<sub>3</sub>.

Dans le cas de notre exemple numérique, on trouve pour le point  $L_3$  une coordonnée verticale de 38,7 éq.-% NO<sub>3</sub><sup>--</sup>.

La position de  $L_3$  étant ainsi connue, on peut encore établir sa cote d'eau à l'aide des isohydres de la fig. 5 selon le procédé décrit précédemment (voir fig. 6b).

La composition de la Solution L<sub>3</sub> devient ainsi 19,7 éq.-% Ca<sup>++</sup>; 31,0 éq.-% NH<sub>4</sub><sup>+</sup>; 49,3 éq.-% H<sup>+</sup>; 38,7 éq.-% NO<sub>3</sub><sup>--</sup>; 61,3 éq.-% PO<sub>4</sub><sup>---</sup>; 212 mol.-g H<sub>2</sub>O.

On peut en déduire que le point  $L_3$  sera atteint lorsqu'on a évaporé, dans l'étape  $L_2 \rightarrow L_3$ , 14 mol.-g  $H_2O$  (= 252 g  $H_2O$ ). Il y aura, dans ce cas, cristallisation de 1,6 mol.-g de phosphate monocalcique (= 403 g CaH<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>, H<sub>2</sub>O).

Par l'évaporation de la Solution  $L_3$ , le Ca<sup>I</sup> continue à cristalliser. Les données numériques de cette dernière opération pourraient être obtenues au moyen des diagrammes de solubilité se rapportant au solide de saturation du phosphate monocalcique (voir nos publications antérieures concernant le domaine de saturation du Ca<sup>I</sup>).

En résumé, les phénomènes suivants se produisent lors de l'évaporation, à 25°, de la Solution  $L_0$ :

|                                                                                               | Trajec-<br>toire                                                                                                                                           |                                                                                                                                                | Quantité totale<br>d'eau évaporée                                                                                                                 | $\begin{array}{l} {\rm Quantit\acute{e}\ de\ P_2O_5}\\ {\rm pr\acute{e}cipit\acute{e}\ en\ \%}\\ {\rm du\ P_2O_5\ total} \end{array}$ |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1 <sup>re</sup> étape<br>2 <sup>e</sup> étape<br>3 <sup>e</sup> étape<br>4 <sup>e</sup> étape | $\begin{vmatrix} \mathbf{L}_0 \rightarrow \mathbf{L}_1 \\ \mathbf{L}_1 \rightarrow \mathbf{L}_2 \\ \mathbf{L}_2 \rightarrow \mathbf{L}_3 \\ \end{vmatrix}$ | aucune cristallisat.<br>crist. de D <sup>I</sup><br>crist. de Ca <sup>I</sup> ,<br>dissol. de D <sup>I</sup><br>crist. de Ca <sup>I</sup> seul | $\begin{array}{c} 115 \text{ molg } \text{H}_2\text{O} \\ 78 \text{ molg } \text{H}_2\text{O} \\ 14 \text{ molg } \text{H}_2\text{O} \end{array}$ | 10,3 (à l'état de D <sup>I</sup> )<br>14,8 (à l'état de Ca <sup>I</sup> )                                                             |

#### RÉSUMÉ.

1° Le présent mémoire concerne le domaine de saturation du phosphate double de calcium et d'ammonium  $Ca_9(NH_4)_4H_{32}(PO_4)_{18}$ ,  $10H_2O$  («sel double  $D^I$ ») dans le diagramme de solubilité du système quinaire  $Ca^{++} - NH_4^+ - H^+ - NO_3^- - PO_4^{---} - H_2O$  établi pour la température de 25°.

2º Le solide de saturation de ce sel est délimité par les surfaces à 2 sels suivantes:

> sel double  $D^{I}$  + phosphate monoammonique  $NH_{4}H_{2}PO_{4}$ , sel double  $D^{I}$  + phosphate monocalcique  $CaH_{4}(PO_{4})_{2}$ , $H_{2}O$ , sel double  $D^{I}$  + phosphate bicalcique  $CaHPO_{4}$ , sel double  $D^{I}$  + nitrate d'ammonium  $NH_{4}NO_{3}$ .

 $3^{\circ}$  Nous communiquons les résultats de 88 essais de saturation qui ont conduit à des solutions saturées à  $25^{\circ}$  de sel double D<sup>I</sup>. Ces valeurs ont été utilisées pour la construction d'un diagramme de solubilité du domaine de saturation du sel D<sup>I</sup>.

4º A l'aide d'un exemple numérique, nous discutons la manière d'employer le diagramme pour l'établissement des trajectoires d'évaporation.

Laboratoire de Chimie minérale et analytique de l'Université de Lausanne.

## 168. Synthèse d'analogues structuraux de l'oxytocine

## par R. A. Boissonnas, St. Guttmann, P.-A. Jaquenoud et J.-P. Waller.

(12 VI 56)

Les travaux de *du Vigneaud* et coll. ont montré que les deux hormones posthypophysaires, l'oxytocine et la vasopressine, n'ont pas une spécificité absolue dans leur action physiologique, la vasopressine ayant une certaine activité oxytocique intrinsèque<sup>1</sup>)<sup>2</sup>) et l'oxytocine possédant une faible activité vasopressique<sup>3</sup>).

|            |                                                                 | $C_6H_4OH$        |                               |
|------------|-----------------------------------------------------------------|-------------------|-------------------------------|
|            | NH <sub>2</sub> O                                               | $CH_2$ O          | R                             |
|            | CH2-CHCNH                                                       | I-CH-CNH          | $-\dot{\mathbf{C}}\mathbf{H}$ |
|            | s                                                               |                   | C=0                           |
|            | s (                                                             | ) 0               | NH                            |
|            | LH-CH-NH-                                                       | <br>С—-СН—-NHС    | –<br>CH                       |
|            |                                                                 |                   | ĊĦ                            |
|            |                                                                 | <b>Ι</b> υ        |                               |
|            | CH_CH_C-                                                        | 0                 |                               |
|            |                                                                 | 0                 | $\operatorname{CONH}_2$       |
|            | $CH_2 \rightarrow CH_2$ NE                                      | E O               |                               |
| (CH        | $[_3)_2 \cdot CH - CH_2 - CH_2$                                 | CH2               | CONH <sub>2</sub>             |
| oxytocine  | $\mathbf{R} = -\mathbf{CH}(\mathbf{CH}_3)$                      | $(C_2H_5)$ $R' =$ | $-CH_2$ -CONH <sub>2</sub>    |
| analogue a | $\mathbf{R} = -\mathbf{C}\mathbf{H}_2 - \mathbf{C}_6\mathbf{H}$ | $I_5 \qquad R' =$ | $-CH_2-CONH_2$                |
| analogue b | $R = -CH_2 - CH$                                                | $(CH_3)_2$ $R' =$ | $CH_2$ -CONH <sub>2</sub>     |
| analogue c | $\mathbf{R} =\mathbf{CH}(\mathbf{CH_3})_2$                      | $\mathbf{R'} =$   | $-CH_2$ -CONH <sub>2</sub>    |
| analogue d | $\mathbf{R} = -\mathbf{CH}(\mathbf{CH}_3)$                      | $(C_2H_5)$ $R' =$ | $-CH_2-CH_2-CONH_2$           |

<sup>1</sup>) E. A. Popenoe, J. C. Pierce, V. du Vigneaud & H. B. Van Dyke, Proc. Soc. Experimental Biology and Medicine 81, 506 (1952).

<sup>2</sup>) H. C. Lawler & V. du Vigneaud, Proc. Soc. Experimental Biology and Medicine 84, 114 (1953).

<sup>3</sup>) V. du Vigneaud, Experientia, Supplementum II, 14 (1955).